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ABSTRACT
Internet-of-Things (IoT) devices are ubiquitous, but little atten-
tion has been paid to how they may incorporate dark patterns
despite consumer protections and privacy concerns arising from
their unique access to intimate spaces and always-on capabilities.
This paper conducts a systematic investigation of dark patterns in 57
popular, diverse smart home devices. We update manual interaction
and annotation methods for the IoT context, then analyze dark pat-
tern frequency across device types, manufacturers, and interaction
modalities. We find that dark patterns are pervasive in IoT experi-
ences, but manifest in diverse ways across device traits. Speakers,
doorbells, and camera devices contain the most dark patterns, with
manufacturers of such devices (Amazon and Google) having the
most dark patterns compared to other vendors. We investigate how
this distribution impacts the potential for consumer exposure to
dark patterns, discuss broader implications for key stakeholders
like designers and regulators, and identify opportunities for future
dark patterns study.

CCS CONCEPTS
• Human-centered computing → Human computer inter-
action (HCI); Interaction design; • Security and privacy →
Human and societal aspects of security and privacy; • Social and
professional topics→ Computing / technology policy.
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1 INTRODUCTION
Internet-of-Things (IoT) devices have become ubiquitous, offer-
ing a wide range of functionality including home automation,
voice assistance, media playback, video surveillance, appliances,
and health monitoring. Despite extensive prior work on the secu-
rity [11, 32, 57, 86, 87, 98, 100] and privacy [14, 22, 23, 27, 62–65, 85]
implications of these purpose-built hardware devices, little atten-
tion has been paid to how the the unique experiences such devices
present may incorporate potentially deceptive and harmful designs.

Such designs are often called “dark patterns,” which interfere
with user behavior to capture people’s attention, extract people’s
consent to boilerplate contracts, goad people into financial trans-
actions, and nudge people into exposing or sharing personal in-
formation, among myriad other unintended or negative outcomes.
Scholars have systematically identified and measured dark patterns
in primarily visual modalities like apps and websites, demonstrat-
ing their wide prevalence and potential harms to user privacy,
autonomy, finances, and cognitive resources. These studies provide
taxonomies of dark patterns that align patterns to different traits,
e.g., user outcome attributes [68], design approaches [26, 39], and
interaction context [42]. With access to sensitive information (e.g.,
health data, video feeds, sensor data), always-on capabilities, and ex-
periences that span hardware and software, IoT device experiences
may exacerbate harms or include previously undocumented dark
pattern instances. For example, the detour dark patterns observed
in this study unexpectedly direct users outside of the immediate
modality (e.g., companion app or on-device interface), which inter-
rupts or obstructs the user’s intended behavior and can risk privacy
and autonomy harms.

In this paper, we conduct a systematic study of IoT-device dark
patterns across multiple device types. We investigate a diverse set of
57 popular IoT devices spanning nine categories, three interaction
methods (app, voice, and direct device control), and six manufac-
turers. IoT devices offer unique lenses through which to study dark
patterns because the devices offer a wide range of functionality, cut
across diverse real-world contexts, have unchangeable physical-
world interfaces (e.g., buttons, voice, and screens), and intersect
with app-based modalities when companion apps are required. Our
study seeks to answer the following questions:

(1) To what extent do dark patterns observed in other modalities
apply to IoT? Do IoT modalities change our understanding of
dark patterns and give rise to new dark patterns? IoT devices
offer new interaction methods (e.g., physical and primarily
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voice-controlled interfaces) compared to websites and apps.
This potentially makes them subject to existing dark patterns,
as well as new ones that depend on the new modalities.

(2) How do dark patterns in IoT devices relate to device type, man-
ufacturer, modality, and the context in which interactions were
performed?IoT devices exhibit diversity along several dimen-
sions, including interaction methods and o�ered functional-
ity. Understanding the relationship between such diversity
and dark patterns can help predict the presence of dark pat-
terns based on IoT device characteristics.

(3) What are the implications of observed IoT dark patterns?Given
the observed IoT dark patterns, we posit why certain dark
patterns manifest in the IoT environment, and note key chal-
lenges and identify trends that can guide further investiga-
tion into IoT dark patterns.

To answer these questions, we address key methodological chal-
lenges for studying dark patterns in the IoT environment, including
how to select a reasonable set of devices to test from the wide range
of device types and manufacturers on the market, how to conduct
rigorous testing across such devices with a tractable amount of ef-
fort and time, and how to collect reproducible and reusable datasets
from experiments with these devices. We build a codebook that
expands upon prior taxonomies [26, 42] with 12 new patterns that
we discovered during our pilot experiments, organize our codebook
by interaction context to facilitate human annotation and capture
which contexts carry higher dark pattern risk, and tackle strate-
gies for labeling dark pattern co-occurrences. This results in a set
of scripted interactions with IoT devices recorded on video, with
annotations that include timestamps when dark patterns occurred
and their position in a video frame.

We present an analysis of the dark patterns identi�ed in our
experiments. On average we found 10�11 unique dark patterns
per device, and noted between 3�90 total patterns (accounting for
multiple instances of patterns) per device. We �nd that pre-selection
and visual preference patterns are most common adopted, as well
as patterns related to account creation, consent/permissions, and
account deletion. We �nd crdi�more dark patterns in always-on
devices like cameras, doorbells, and speakers than in other types.
We �nd that Amazon and Google devices tend to contain more dark
patterns. Our results do not point to one single factor as the primary
driver of dark patterns; rather, our �ndings highlight the necessity
of multi-factor analysis for dark patterns. We also discuss how
nontransparent designs in IoT devices may exacerbate �nancial and
privacy harms, as well as other risks from the IoT context.

Finally, we discuss the implications of our �ndings, focusing
on key aspects of the IoT environment that give rise to observed
behaviors, challenges for future research on IoT dark patterns, and
interesting trends identi�ed in our dataset. We suggest potential
mitigations for design practitioners and regulators, noting strategies
to minimize darkness and improve transparency.

2 BACKGROUND
We begin by reviewing related work on dark patterns in general,
and IoT risks, harms, and user experience (UX) in particular. We
contextualize and motivate this study within this broader scope of
existing scholarship.

2.1 Dark Patterns
Dark patterns [20] are user interface designs that trick users into un-
wanted or unintentional behavior, typically against users' best inter-
ests. Conceptually, dark patterns relate to malicious interfaces [25],
online manipulation [93], nudges [94], and UX design [47]. Dark
patterns have received public attention in the press [58, 73, 84],
scholarly and regulatory workshops [21, 59, 79], and government
reports [24, 33, 34]. Commensurate with this increasing awareness,
dark patterns are now regulated in some contexts such as consent
interactions [4, 6, 51].

Academics have developed robust taxonomies of dark patterns
based on their underlying mechanisms or tactics, both from a de-
sign perspective [39, 67] and with a privacy lens [19]. Following
these taxonomies, observational and measurement studies iden-
tify and enumerate dark patterns in app [26, 37, 39, 42] and web-
site [39, 42, 67] modalities. These studies demonstrate dark pattern
pervasiveness and the diversity of designs across various user inter-
actions, platforms, and modalities. Other work delves into speci�c
contexts, providing detailed insight into certain dark pattern or
interaction types. These contexts include e-commerce [67], consent
interactions and cookie banners [40, 41, 44, 45, 52, 61, 78, 92], ac-
count deletion interactions [56, 89], online addictions [3, 72], and
speci�c online services [56, 71]. The level of detail explored in these
studies provides evidence for regulatory responses. For example,
Gray et al. [40] analyzed dark pattern use in the non-compliance
of consent management providers (CMPs) to the GDPR consent
requirements; such evidence can a�rm consumer complaints in
enforcement actions [1, 76]. A key open question, which we discuss
below, is the extent to which prior work on other modalities and
contexts apply to the IoT environment.

Scholars taxonomized the range of poor outcomes and consumer
harms dark patterns may cause [43, 47, 68, 75, 91]. User studies
capture consumer reactions to dark patterns [18, 26, 60, 80, 89]
and �nd that people do feel manipulated or disadvantaged by dark
patterns [38, 71], but that people vary in how they perceive dark
patterns and their theorized harms (e.g., some are surprised by
certain dark patterns, while others are unsurprised but resigned).

Researchers are beginning to grapple with the role thatcontext
plays with respect to dark patterns. For example, work focusing on
Roach Motels[20, 39] (i.e., designs that make it easy to get into a sit-
uation such as a subscription, but hard to get out of) frame dark pat-
terns as socio-technological phenomena, largely dependent on how
they are interacted with rather than how they are presented [16].
Gray et al. [40] stress an �n-dimensional� approach for research-
ing dark patterns that incorporates factors like time, interaction,
design, psychology, and law via multi-disciplinary analysis. Work
by Gunawan et al. [42] embraces this approach by comparing dark
patterns across thematic UX categories, while work by Mathur et al.
[68] critiques dark patterns through a variety of disciplinary lenses.
Our study aims to continue this line of scholarship by investigating
dark patterns in previously unexplored contexts and interaction
modalities with multi-factor analyses.

2.2 IoT Contexts and Emerging Modalities
Context is critical when considering dark patterns in IoT devices
that may serve vastly di�erent purposes. They can access intimate
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spaces (e.g., bedrooms or bathrooms), collect highly speci�c data
through sensors, and be perpetually on or listening (e.g., micro-
phones in voice assistants), with device hardware that may not pro-
vide feedback to users (e.g., not indicating when a device is record-
ing video). These qualities present unique and additional challenges
for user privacy, security, and safety (as demonstrated by extensive
scholarship on IoT privacy and security issues [7, 9, 10, 12, 13, 17,
23, 27, 30, 31, 49, 53, 62� 65, 69, 69, 74, 81, 85, 88, 95, 97, 99, 101])
relative to websites and apps.

Dark designs may exacerbate these safety and security concerns.
Limited surfaces for interaction on IoT devices, or complex con-
trol schemes involving companion apps, may o�er opportunities
for designers to obfuscate, discourage the use of, or even omit
privacy-critical functionality. Recent work has begun to measure
users' interactions and perceptions of settings interfaces in IoT
devices [15, 66], providing early indicators of �good� UX in IoT
devices. Owens et al. [80] investigated non-visual interfaces like
voice assistants through speculative design �ction exercises and
user surveys, identifying that while participants found intention-
ally deceptive scenarios to be more problematic than those that
were not, overall the participants did not show much concern over
deceptive scenarios.

IoT devices may use the same platform as mobile phones (e.g.,
using Android variants such as Android Auto, Android TV, and
Android Wear). An open question, then, is whether such devices
exhibit similar dark patterns as those found in mobile apps that run
on the same OS foundation [26, 42]. While this might be the case
for some devices, several factors may alter the frequency or types
of dark patterns adopted in IoT devices when compared to mobile
apps. For example, when an IoT device utilizes a commodity OS like
Android, the user interface and interaction modalities may di�er
from smartphone Android (e.g., a remote for Android TV rather
than a touchscreen). Furthermore, many IoT devices run bespoke
or uncommon OSes (e.g., Tizen from Samsung or Fuschia from
Google), or include sensors that are not present on smartphones
(e.g., always-on cameras).

2.3 Building On Prior Dark Patterns Work
Our work lies at the intersection of dark patterns and IoT. Our
codebook for identifying dark patterns (see subsection 3.3) draws on
taxonomies and harm frameworks from prior work [19, 42, 67, 68],
and contributes to early explorations on darkness in emerging
modalities [80].

Like prior measurement work, we manually interact with de-
vices, look for dark patterns, and link dark patterns to potential
harms. We draw on approaches [26,42] and design perspectives [15]
from prior work to inform our process for interacting with IoT de-
vices and labeling dark patterns (see subsection 3.2). We expand
upon existing measurements by collecting frequencies of repeated
dark pattern encounters. Further, we directly compare our IoT dark
pattern measurements to prior manual studies [26, 42] (see subsub-
section 4.1.4).

Previous work primarily focused on visual modalities like apps
and websites [26, 42, 67]. In contrast, we holistically examine de-
vice experiences multimodally, through direct interaction with
the devices, voice interactions, and interactions with companion

apps. Prior manual studies conducted uniform time-bound actions
per app or service [26, 42], which were naturally constrained by
each modality's a�ordances (e.g., all observed apps or mobile sites
were interacted with via touchscreen [26, 42] or desktop sites were
viewed on a computer). To understand a device' experience across
o�ered modalities and robustly explore available features or nec-
essary con�guration, our methods necessitated unrestricted inter-
action durations and �exible interaction scripts. As such, we do
not conduct disparate, per-modality interactions nor draw apples-
to-apples comparisons between the modalities inspected. Speci�c
to smart devices, we depart from recent design �ction and user
study [80] approaches for exploring dark patterns in voice inter-
face, instead using manual testing methods on real device interfaces
and examining modalities beyond voice alone.

3 METHODS
We now describe the methods used in our study. This section covers
preliminary experiments, then describes how we arrived at the �nal
number of devices examined, how we inspected and interacted with
each device, and how we annotated dark patterns per IoT modality.
We also present validation of our annotation process.

3.1 Lab Environment and Devices
Our study was conducted on devices purchased between 2017�2022
in the United States and primarily housed within a single, controlled-
access lab environment. This lab environment resembles a studio
apartment, with devices installed in the manner they might be in a
typical home. Two TV devices were hosted o�-site by a trusted third-
party. Including these two TVs, we studied 57 devices spanning
nine broad types:home automation, home appliance, health, smart
hub, camera, doorbell, television, media device, andspeakerdevices
as listed in Table 1. Although additional devices were available in
our lab environment, we excluded devices that were model-year
iterations of the same device (e.g., of our available Echo Dots, we
included only the most recent 4th Gen Echo Dot) and devices with
dysfunctional factory-reset capability. We list excluded devices in
the Appendix (Table 6).

In general, IoT devices o�er multiple interaction modalities, in-
cluding on-device buttons, touch screens, remotes, voice commands,
or even no on-device interface at all. For devices in the last category,
the only available modality was a companion app installed on a
smartphone. To operate these devices, we primarily used Android
phones with relevant companion apps installed, with exceptions
for HomePods, which we paired with an iPhone.

3.2 Pilot Experiment
Two key challenges for identifying dark patterns in IoT devices are:

(1) Existinginteractions scriptsthat stipulate how to manually ex-
ercise and record interactions with websites and apps [26,42]
are unlikely to be su�cient for exercising the full functional-
ity of IoT devices, given di�erences in modality a�ordances.

(2) Existing codebooks for annotating dark patterns [26, 39, 42]
may not be su�ciently illustrative when applied to IoT or
multimodal device experiences.

To address these issues we conducted an exploratory pilot experi-
ment to identify any necessary adjustments to prior methods for
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Device Type Device Name Ecosystem App Name (If Used) App Dependency Video Duration

Home Automation

Amazon Smart Plug Amazon Amazon Alexa All interactions 0:11:13
Jinvoo Smart Bulb Jinvoo Smart All interactions 0:19:22
Gosund Smart Light Bulb Gosund All interactions 0:12:30
Govee LED Light Bulb Govee Home All interactions 0:15:41
Magichome Strip Magic Home Pro All interactions 0:09:24
Meross Door Opener meross All interactions 0:12:17
Nest Thermostat� Google Nest All interactions 0:26:27
Ring Chime Amazon Ring All interactions 0:19:50
Smartlife LED Bulb Smartlife Smart Life All interactions 0:18:27
WeMo Plug Wemo All interactions 0:13:14
Thermopro TP90 ThermoPro Home Smart interactions 0:06:59
TP-Link Bulb Kasa Kasa Smart All interactions 0:14:03
TP-Link Plug Kasa Kasa Smart All interactions 0:14:23

Camera

Amcrest Cam Amcrest View Pro All interactions 0:11:45
Arlo Q Cam Arlo Arlo Secure: Home Security All interactions 0:19:24
D-Link Cam mydlink All interactions 0:13:15
Lefun Cam MIPC All interactions 0:11:31
Nest Camera Google Google Home All interactions 0:13:13
Ring Camera Amazon Ring All interactions 0:22:42
Ring Camera (Indoor) Amazon Ring All interactions 0:16:04
Tuya Smart Camera Tuya Smart All interactions 0:17:00
Wyze Cam Wyze All interactions 0:23:47
Yi Home Camera Yi Home All interactions 0:11:08

Media Device

Apple TV� Apple No interactions 0:17:33
Chromecast w/ Google TV� Google No interactions 0:31:36
Facebook Portal Mini� No interactions 0:34:33
Fire TV� Amazon No interactions 0:51:49
Nintendo Switch� No interactions 0:38:28
Roku TV� No interactions 0:25:20
TiVo Stream� No interactions 0:39:37

Smart Hub

Aqara Hub Aqara Home All interactions 0:19:37
Sengled Smart Hub Sengled Home All interactions 0:12:12
SmartThings Hub Samsung SmartThings All interactions 0:34:43
Switchbot Hub SwitchBot All interactions 0:10:47
Philips Hue Bridge Philips Hue All interactions 0:13:23

Doorbell

Arlo Doorbell Arlo Arlo Secure: Home Security All interactions 0:13:19
Nest Doorbell Google Google Home All interactions 0:16:33
Ring Doorbell Amazon Ring All interactions 0:15:21
Ring Doorbell ('21, Wired) Amazon Ring All interactions 0:28:07

Speaker

Echo Dot (4th Gen) Amazon Amazon Alexay Setup interactions only 0:48:00
Echo Show 5� Amazon Amazon Alexay Smart interactions 0:44:09
Home Mini Google Google Homey Setup interactions only 0:18:37
Nest Mini Google Google Homey Setup interactions only 0:45:15
Homepod Apple Home (iPhone)y Setup interactions only 0:21:56
Homepod Mini Apple Home (iPhone)y Setup interactions only 0:31:12
Nest Hub Max� Google Google Homey Setup interactions only 0:41:19

Home Appliance
Samsung Fridge� Samsung No interactions 0:46:25
GE Microwave SmartHQ Smart interactions 0:20:33

TV

LG TV� No interactions 0:27:51
Samsung TV� Samsung No interactions 0:22:42
Sony TV� Sony No interactions 0:30:00
Vizio TV� Vizio No interactions 0:21:49

Health

Oxylink Oxygen Monitor ViHealth All interactions 0:12:27
Renpho Smart Scale Renpho Smart interactions 0:18:54
Withings BPM Connect Withings Withings Health Mate All interactions 0:24:49
Withings Sleep Withings Withings Health Mate All interactions 0:09:15
Withings Thermo Withings Thermo All interactions 0:10:20

Table 1: The 57 devices used in this study. Device names marked with asterisks (*) contained navigable screens in the device
hardware. App names marked with daggers ( y) denote devices for which we annotated and discovered dark patterns in both the
device and the app. We collected approximately 20 hours of recordings in total. Refer to Table 5 in the Appendix A for device
�rmware or app software information.
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Figure 1: Flowchart detailing our manual analysis procedures, from pilot experiments to methods adjustments and �nal
annotations. Note that we added 13 more devices a few months after performing the preliminary interaction recording, bring
the total from N=71 to N=84 devices.

our �nal set of experiments, as well as identify novel dark pat-
terns for our codebook. Figure 1 presents a �owchart of our pilot
experiments.

The �rst author interacted with all devices housed in the lab
during August�October 2021 (N=71), using a Google Pixel 3 phone
or iPhone 6 to control devices with an available companion app.
Screen recordings were taken for companion app interactions, and
video recordings were taken for physical device interactions. All
phones and devices were connected to the local lab network while
each device was examined, and were logged-in to pre-existing lab
user accounts per-device. These user accounts varied in age as they
were created as needed over several years. As such, many devices
contained existing usage data. Each device was used as intended
(e.g., the fridge was used to store food, light bulbs were turned
on and o�, cameras took or displayed footage) and we explored
all navigation options provided by a device (e.g., menus in visual
interfaces like apps or physical touchscreens, and queries in voice
interfaces). For each device we sought to examine every navigable
feature or area in the interface, and followed navigation to the
depth of any end-node pages or frames. We did not attempt to
interact with every possible button or toggle provided by end pages
or frames (either on the device itself or in its companion app).

The �rst author then reviewed each video (either a screen record-
ing or external footage) and labeled dark patterns in two iterations.
First, we labeled unique dark patterns according to the �ve main
categories in the Gray et al. [39] taxonomy and kept written descrip-
tions of encountered patterns. These labels were discussed with
two co-authors to achieve alignment on dark pattern identi�cation.
Second, the �rst author labeled each video according to a codebook
based on speci�c dark pattern instances from Di Geronimo et al.
[26] and Gunawan et al. [42], noting dark behaviors that had not
been explicitly described in prior work. These notes were reviewed
and discussed with the second author and resulted in the addition
of new labels for novel dark pattern cases.

As manual annotations are subject to individual bias, the �rst two
authors independently annotated a subset of these device recordings
(at least one device per type, plus an additional speaker with a
touchscreen; N=8 devices). The two authors then compared labels
for validation. Disagreements were discussed and corrected towards
an agreed-upon understanding of each pattern, generally defaulting
to the �rst author's labels.

3.3 Methods Development
Next we re�ned our interaction scripts and codebooks for the �-
nal round of device interactions, data collection, and subsequent
annotations. Figure 1 shows the output of this process: a general
interaction script used for non-voice controlled IoT devices and
companion apps, an interaction script for voice-controlled devices,
and an expanded codebook for labeling dark patterns.

3.3.1 Environment Isolation.Compared to a neatly isolated envi-
ronment for testing websites and apps, the single-network, live lab
environment presented unique challenges for IoT data collection.
Pilot study interactions revealed the potential in�uence of interac-
tion history or pre-existing data, and logged-in devices prevented
insight into device and account setup experiences. With all devices
on the same network, some devices and apps could communicate
with each other (e.g., light bulbs connected to several smart hub
apps, or Amazon devices connected to the same app). This blurred
distinctions between similar devices: in some cases, we received
noti�cations from devices we were not intending to interact with if
that device shared the same app as the device we were inspecting.

To mitigate these issues during our �nal data collection, we
factory reset each device and�like prior work [26, 42]�created a
fresh user account for each device as needed.1 We also provisioned
a separate, isolated network solely for this study, such that only
one controller phone and the currently-examined device would be
connected to the network at the same time (all other lab devices
remained on the original network).

3.3.2 Embedded Browsers and OS Interfaces.Some devices and
companion apps loaded web pages using built-in browsers. Unlike
prior work [ 42], we included dark patterns discovered in such web
pages if these (1) transmitted login information or (2) delivered in-
formation promised by previous device/app menus or features, but
did not count dark patterns in embedded pages that served tertiary
purposes. For example, the Google Nest Mini app contains menu
items that lead to a logged-in shopping web page hosted by Google
that allows users to purchase other Google Home products. In this
case, we inspected web pages relevant to the shopping task, but
did not visit Google Account pages or other product pages hyper-
linked from the same page. This restriction avoids incorporating the

1For Google or iPhone devices using OS-level apps like Google Home or Apple Home, fresh user
accounts were used for smartphone login.
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entirety of vendor websites into our analysis of speci�c IoT prod-
ucts. Similarly, some devices and controlling smartphones share the
same manufacturer (e.g., HomePod and iPhone; Google Home with
Android devices) and leverage both OS-level and companion-app-
level interfaces to control the smart device. Thus, we retained dark
patterns found in the OS in our dataset if they were encountered
naturally within our interaction script and did not explore other
OS interfaces beyond those relevant to IoT interactions.

3.3.3 Speaker Interactions.In the pilot study, we asked our speak-
ers a small set of common queries, suggested verbatim by device
documentation and lists from popular consumer electronics web-
sites [36, 50, 83]. These lists, however, tended to mention highly
speci�c one-o� use cases like shopping for an item, playing music,
or inquiring about the weather. Other desired interactions, like
navigating settings or account deletion, were not as readily found.

To keep our speaker interactions as consistent as possible with
physical devices and companion apps, we constructed our own
list of commands that would exercise the sample commands listed
above, as well as attempt to navigate settings and conduct exit
interactions (e.g., delete the associated account). We conducted
smaller tests of these commands across all three speaker ecosystems
in our study to identify ecosystem-speci�c functionality (like the
presence of a guest mode, or the ability to mute the mic by voice
command) and test the limits of available voice-controlled actions.
Account and device setup interactions were omitted from this list,
as we discovered that all speakers in our tests required companion-
app-based setup prior to use.

3.3.4 Novel Dark Pa�erns.Based on the results of the pilot experi-
ment we added 12 new dark patterns to our codebook. Throughout
the pilot experiments, the authors noted all unlabeled device and
companion-app behaviors that �t within one or more broad clas-
si�cations of dark patterns [39, 67]. The authors discussed these
behaviors while co-annotating recordings, comparing independent
annotations, and when reviewing intermediary analyses. The au-
thors agreed that these behaviors fell within high-level dark pattern
categorizations and traits, but were not speci�cally captured by
prior codebooks used during the pilot experiment [26, 42]. We
present novel dark patterns inbold in Table 2. We discuss these
novel patterns and their implications in subsection 4.2.

3.4 Final Dataset Production
We now describe our �nal device interaction, interaction recording,
and video annotation procedure, which took place October 2021�
June 2022. We examined the 57 devices shown in Table 1.

3.4.1 Navigating Interfaces.Our approach to interactions relied
on interaction scripts drawn from prior work [26, 42] with modi-
�cations stated in subsection 3.3. Our script was designed to un-
cover and explore as many possible features�including settings
categories�a�orded by each smart device across companion apps
and device hardware (which included voice-controlled and visual
interfaces). We conducted device and account setup, traversed avail-
able features and settings, and performed exit interactions (e.g.,
logout, device disassociation, data or account deletion, etc.) where
possible for each device. When setting up an account we agreed to
all options that were preselected or preferred in visual hierarchies.

In cases where dark patterns did not steer us towards particular
choices we chose the �rst available option, from top to bottom
and from left to right. We focused on traversing as many main
features or options as were intuitively provided within the compan-
ion app or device interface. Likewise, we conducted a best-e�ort
approach to visit all available settings, subject to limitations where
a device's settings navigation would require an unusually long time
to traverse (e.g., each setting was individually paginated, requiring
multiple page loads to traverse). In these cases we visited a subset
of settings for reasonable coverage.

3.4.2 Device Interactions.We factory-reset each device, connected
them to the isolated network, con�gured devices using a unique
e-mail address for registration if required, and used factory-reset
Google Pixel 3 and iPhone 6 phones for any app-based interactions.
We recorded companion app interactions using screen recording
software and took video footage of device interactions using a
smartphone camera on a tripod.

Each IoT device test began with an attempt to interact with the
physical device. When prompted by the device or when apparent
that the device required a companion app for smart features, we in-
stalled the relevant app on a compatible smartphone, began screen
recording, and interacted with the device through the app. We fol-
lowed device or app guidance when determining which modality to
use and traversed any remaining features or device-speci�c settings
in the device or app after completing as many available actions as
possible for the primary purpose(s) of the device. Following our
traversal, we examined any available app-level or physical-device
settings and attempted any available exit interactions.

3.4.3 Companion App Interactions.To preserve ecological validity,
we sought to interact with IoT devices as directly as possible, as
an average user might. Thus we refrained from using companion
apps unless it was the only way to control a device or the device
required us to. Of our 57 devices, only 12 could be fully interacted
without a companion app: the media devices (e.g., Apple TV and
Roku TV), the TVs, and the fridge. If a device prompted login but
did not require the companion app, we used a desktop browser for
account registration.

We identi�ed cases where the same companion app controlled
multiple devices in our tests, which allowed us to save time with-
out loss of coverage by interacting in full only once for all its
corresponding devices. For example, both Alexa speakers and the
Amazon Plug use theAmazon Alexaapp; the Ring Camera, Ring
Chime, and Ring Doorbell all share theRingapp; all three Google
speakers and the Chromecast useGoogle Home, etc. In these cases
we fully traversed each app only once, and otherwise only inter-
acted with the app as necessary per-device, on demand�typically
for fresh account or device setup, or managing relevant settings.

3.4.4 Annotation Procedure and Validation.We manually anno-
tated the video recordings produced by our device and companion
app interactions for dark patterns using the codebook in Table 2.
Prior studies using similar methods operationalized dark patterns
as binary variables that were either present or not present in each
sample [26, 42]. In contrast, Mathur et al. [67] counted the number
of each type of dark pattern that appeared on each website and
web page during automated crawls. We use both approaches in



Understanding Dark Pa�erns in Home IoT Devices CHI '23, April 23�28, 2023, Hamburg, Germany

Context Category Dark Pattern Description Mapping to Prior Taxonomies Potential Harms

Registration
Account required to use service Forced Registration [19], Forced Action [26, 39] Privacy [68]
Account required to set up device Forced Registration [19], Forced Action [26, 39] Privacy [68]

Engagement

Gami�cation Gami�cation [26, 39] Cognitive [68]
Extraneous noti�cation badges Aesthetic Manipulation [26, 39] Cognitive [68]
Extraneous message centers Nagging [26, 39] Cognitive [68]
Extraneous social media features Nagging [26, 39] Cognitive [68]

Consent and Permissions

No Terms of Service/Privacy Policy Privacy Zuckering [19, 20, 26, 39] Privacy, Autonomy [68]
No link to Terms of Service/Privacy Policy Hidden Legalese Stipulations [19], Hidden Information [26, 39] Privacy, Autonomy [68]
No consent checkbox for Terms of Service/Privacy Policy Privacy Zuckering [19, 20, 26, 39] Privacy, Autonomy [68]
Consent checkbox is preselected Bad Defaults [19], Preselection [26, 39] Privacy, Autonomy [68]
Consent notice includes email subscription Bad Defaults [19], Preselection [26, 39] Autonomy [68]
Preselected email subsciption checkbox Bad Defaults [19], Preselection [26, 39] Autonomy [68]
Permission requested without explanation Hidden Legalese Stipulations [19], Hidden Information [26, 39] Privacy, Autonomy [68]
Permission pops up unprompted Nagging [26, 39] Cognitive, Privacy [68]
Device sensed without permissions Privacy Zuckering [19, 20, 26, 39] Privacy, Autonomy [68]
Nonpermanent opt out Trick Question [20, 26, 39] Autonomy [68]

Ads

Native ads Disguised Ads [20, 26, 39] Cognitive [68]
Hard to close ads Aesthetic Manipulation [26, 39] Cognitive [68]
Inconsistent close buttons Aesthetic Manipulation [26, 39] Cognitive [68]
Interact with ads to unlock a feature Forced Action [26, 39] Cognitive, Autonomy [68]
Pay to avoid ads Hidden Information [26, 39] Financial [68]

Money

Pay for �ctional currency Intermediate Currency [26, 39] Financial [68]
Pay for badges Intermediate Currency [26, 39] Financial [68]
Unsolicited free trial Forced Continuity [20, 26, 39] Autonomy [68]
Free trial requires payment method Forced Continuity [20, 26, 39] Financial [68]
Pay for long term use Forced Continuity [20, 26, 39] Financial [68]
Feature seems free but is not Disguised Ads [20, 26, 39] Financial [68]
Feature seems premium but is not Hidden Information [26, 39] Financial [68]
Cannot sort free from premium content Aesthetic Manipulation [26, 39] Cognitive [68]

Shopping

Suggests preferred items False Hierarchy [26, 39] Autonomy [68]
Sneaking items into basket Sneak Into Basket [26, 39] Financial, Autonomy [68]
Optional items are preselected Sneaking [26, 39] Financial, Autonomy [68]
Shaming language when opting out Privacy Zuckering [19], Toying with Emotion [26, 39] Autonomy [68]
Item has a di�erent price Bait and Switch [20, 26, 39] Financial [68]
Surpise fees Hidden Information [26, 39] Financial [68]
Countdown timer Toying with Emotion [26, 39] Financial, Autonomy [68]
Social proof Toying with Emotion [26, 39] Financial, Autonomy [68]

Seen in Settings

No bulk options for settings Privacy Zuckering [19], Aesthetic Manipulation [26, 39] Cognitive [68]
No noti�cation settings Bad Defaults [19], Forced Action [26, 39] Cognitive, Autonomy [68]
No privacy settings Bad Defaults [19], Forced Action [26, 39] Privacy, Autonomy [68]
Noti�cation settings preselected Bad Defaults [19], Preselection [26, 39] Cognitive, Autonomy [68]
Privacy settings preselected Bad Defaults [19], Preselection [26, 39] Privacy, Autonomy [68]
Hard to navigate settings Privacy Zuckering [19], Aesthetic Manipulation [26, 39] Cognitive [68]
Inconsistent Settings UI Privacy Zuckering [19], Aesthetic Manipulation [26, 39] Cognitive [68]
Settings detour to a di�erent modality Privacy Zuckering [19], Forced Action [26, 39] Cognitive [68]

Leaving

No logout Immortal Accounts [19], Roach Motel [20, 26, 39] Autonomy [68]
No account deletion Immortal Accounts [19], Roach Motel [20, 26, 39] Privacy, Autonomy [68]
Unclear deletion options Privacy Zuckering [19], Roach Motel [20, 26, 39] Privacy, Autonomy [68]
Time delayed deletion Immortal Accounts [19], Roach Motel [20, 26, 39] Privacy [68]
Cannot remove device Immortal Accounts [19], Roach Motel [20, 26, 39] Privacy [68]
Cannot delete data from device Immortal Accounts [19], Roach Motel [20, 26, 39] Privacy [68]
No local subscription cancellation Immortal Accounts [19], Roach Motel [20, 26, 39] Financial [68]

Interface Interference

General preselection Preselection [26, 39] Autonomy [68]
Visual preference False Hierarchy [26, 39] Autonomy [68]
Confusing text Trick Question [20, 26, 39] Autonomy [68]
Con�rmshaming Toying with Emotion [26, 39] Autonomy [68]
Forced action Forced Action [26, 39] Autonomy [68]

Subverting Expectations

Hidden information Hidden Information [26, 39] Autonomy [68]
Hidden feature behavior Aesthetic Manipulation [26, 39] Cognitive, Financial, Autonomy [68]
Nagging - General Nagging [26, 39] Cognitive [68]
Popup nag Nagging [26, 39] Cognitive [68]
Feature detours to a di�erent modality Forced Action [26, 39] Cognitive [68]
Unprompted suggestions Nagging [26, 39] Cognitive, Autonomy [68]
Nagging self-promotional content Nagging [26, 39] Cognitive, Autonomy [68]

Table 2: Final codebook of dark patterns we used to annotate recordings of interactions with IoT devices and companion apps.
We group the dark patterns into ten context categories, and map each dark pattern to associated traits, strategies, and harms
drawn from prior work. Novel dark patterns are shown in bold. Patterns with parenthetical traits or strategies constitute
deceptive or unfair behaviors that employ similar strategies to the maximize privacy dark strategy [ 19] but applied to �nancial
or engagement contexts.
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this study. To achieve this, we used a video annotation software
that facilitated observation and coding for compound or multiple
instances of dark patterns, and additionally supported timestamps
and image coordinates for each label [28, 29]. When encountering
multiple dark patterns on the same screen or video frame, we ex-
amine the presented interface elements holistically and consider
whether the dark patterns appear to be deployed towards a shared
immediate purpose. If so, we select relevant designs in a frame and
annotate the selection with multiple dark patterns.

All recordings were annotated by the �rst author. In cases where
the �rst author felt a label was uncertain, the second author was
consulted to achieve consensus.

We validated our device annotations by assessing inter-coder
reliability between the �rst two authors. Speci�cally, the two au-
thors independently annotated the recordings of one device per
type and we compute Cohen'ŝ to assess agreement. Both authors
annotated 585 labels, with 75 and 80 positive unique (binary) labels,
and 510 and 505 negative unique labels. For total instance counts,
the authors note 169 and 161 positive frequency labels, respectively,
and 416 and 424 negative labels per-pattern. For the �nal dataset,
we use the �rst author's labels by default to maintain consistency
across all device annotations.

Table 3 presents thêagreement statistics with respect to unique
and total dark patterns. Across all 52 patterns in our study, we
note^=0.56 and̂ =0.42 for unique and total dark pattern counts
respectively, both of which are in the moderate agreement range
(0”41 Ÿ ^ Ÿ 0”60) [54]. Given the comparatively large size of our
codebook and high granularity of individual dark pattern cases, we
also grouped our inter-rater labels according to the context cate-
gories in our codebook (adapted from Gunawan et al. [42]) and the
16 dark pattern types from Di Geronimo et al. [26].2 We observe
improvements when calculatinĝ for each grouped categorization:
unique-count̂ =0.60 (mildly signi�cant [54]) for our context cate-
gories and̂ =0.67 (signi�cant [54]) for the Di Geronimo et al. [26]
categories.3 These results demonstrate more agreement between
our labelers at the granularity of categories than at the granularity
of speci�c dark patterns.

In the context of our codebook size, manual methods, video
length, and corpus-to-validation sample diversity, we consider our
agreement consistent with similar studies' measures [26, 42] and
therefore su�cient to proceed with as a reasonable approximation
of overall agreement to popular taxonomies. However, as human
measurement remains a challenging part of dark patterns study, we
further discuss limitations of such methods in subsection 5.4.

4 ANALYSIS
We now analyze our dataset of annotations for all devices included
in our experiments. We identify 1,255 total unique instances of dark
patterns drawing from 52 distinct patterns. We then compare our
results to those from prior measurement studies of dark patterns
on the web and in apps.

2These patterns are used in Di Geronimo et al. [26] and Gunawan et al. [42] to group dark pattern
cases to the popular Gray et al. [39] taxonomy.
3Whether moderate or signi�cant̂ measures are interpreted as acceptable depends on discipline.
Within HCI, the adoption of inter-rater reliability measures his somewhat rare [70].

4.1 Dark Patterns Across All Devices
4.1.1 Dark Pa�ern Popularity.We �rst count unique dark patterns
and per-pattern frequency for all patterns in our codebook across
all devices, to broadly quantify dark patterns in IoT experiences.

The cumulative distributive function (CDF) of unique and total
dark patterns per device in Figure 2 shows disparity between bi-
nary, unique presence counts (whether a dark pattern is found in a
device interaction or not) and total frequency counts (how many
dark patterns appear in a device interaction, including multiple
instances of the same pattern). The x-axis denotes how many dark
patterns were discovered (unique count in blue, total in orange).
The y-axis represents the percentage of the 57 devices in our study
that contained that number of dark patterns for either count. We
discovered at least three unique dark patterns in all 57 devices.4 On
average, devices contained 9 unique dark patterns, and all devices
containedŸ 25unique patterns.5

If the devices in our corpus included only one instance of each
unique dark pattern, then the two distributions would be identical
and overlaid atop each other. However, beyond the 40th percentile
the distributions diverge, with the highest number of total dark
patterns (90, Table 4c) being more than triple the maximum number
of unique dark patterns (25, Table 4a). Thus, many devices not only
exhibit dark patterns multiple times, but do so in large numbers.
Table 4 highlights the top ten devices in our corpus by highest
and lowest counts of unique and total dark patterns. Both lowest-
count tables (Table 4b and Table 4d) share eight out of ten devices.
However, the highest-count tables (Table 4a and Table 4c) share only
six devices, suggesting variance between top-o�ending devices'
propensity to deploy dark patterns multiple times.

Figure 3 presents the percentage of devices with at least one in-
stance of each dark pattern in our codebook, color-coded by context
category. Overall, patterns in theInterface Interference, Consent and
Permissions, Registration, Seen in Settings, andLeavingcategories
were most frequently adopted.

4.1.2 High Total Counts and Potential Design Templating.As shown
in Figure 3, twoInterface Interferencepatterns appeared most fre-
quently by total count. A closer look reveals that on average, the
visual preferencepattern appears 6 times per device (the highest
average value across all dark patterns), withgeneral preselection(the
second highest average) appearing only around twice per device�
this is visualized in Figure 17 in the Appendix, while Figure 18 strat-
i�es the total count averages per device category to demonstrate
that speakers, doorbells,andcamerascontained the highest frequen-
cies of these two patterns. We hypothesize that the high adoption
rate of these patterns may be due to design templates and/or auto-
mated design deployment methods, as opposed to unique, conscious
decisions by designers. For example, a UX design tool may have
checkbox elements set to have preselected defaults, or binary choice
buttons that privilege one button over the other even before button
text is added. Context-speci�c versions of these patterns (e.g., pres-
elected consent checkboxes or settings) were also fairly common
in our dataset.

4This aligns with prior manual studies' �ndings of dark patterns in 95% of studied apps [26] and
100% of studied web services [42].
5For comparison, prior manual studies note upper-bound counts of 19 unique dark patterns in web
services [42] and 23 in apps [26], and average unique counts between 7�8 in both studies.
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Cohen's ^

Strati�cation Unique DPs Total DPs

Per Pattern ^ =0.561 ^ =0.421
Per Context Category ^ =0.6 ^ =0.407
Per DiGeronimo [26] Type ^ =0.679 ^ =0.535

Table 3: Inter-rater reliability measures computed between
the �rst two authors for unique and total dark patterns, orga-
nized per pattern, per context category, and by the 16 types
from Di Geronimo et al. [26].

Figure 2: CDFs of unique and total dark patterns per device.

Device Uniq. ›

Fire TV 25
Echo Show 5 20
Withings BPM Connect 19
Ring Doorbell ('21, Wired) 19
Wyze Cam 18
Nest Mini 16
Ring Camera (Indoor) 16
Ring Chime 16
Ring Camera 16
Homepod 15

Device Uniq. ›

Apple TV 3
Sengled Smart Hub 3
Oxylink Oxygen Monitor 3
Philips Hue Bridge 3
Withings Sleep 3
Amcrest Cam 4
Smartlife LED Bulb 4
Homepod Mini 4
Roku TV 5
GE Microwave 6

Device Total ›

Ring Doorbell ('21, Wired) 90
Fire TV 79
Echo Show 5 75
Nest Mini 69
Nest Hub Max 57
Ring Camera (Indoor) 55
Ring Camera 48
Echo Dot (4th Gen) 38
Home Mini 38
Nest Doorbell 33

Device Total ›

Oxylink Oxygen Monitor 3
Sengled Smart Hub 3
Withings Sleep 4
Amcrest Cam 5
Homepod Mini 5
Thermopro TP90 6
GE Microwave 6
Smartlife LED Bulb 7
Roku TV 7
Philips Hue Bridge 8

(a) Highest Unique DPs (b) Lowest Unique DPs (c) Highest Total DPs (d) Lowest Total DPs

Table 4: Top ten IoT devices sorted by those with the (a) highest unique, (b) lowest unique, (c) highest total, and (d) lowest total
dark pattern instances.

Figure 3: Percentage of devices containing each dark pattern, with each pattern colored according to our context categories.

4.1.3 Impact of Interaction Duration.To explore the disparity be-
tween unique and total counts, we consider the amount of time we
spent interacting with each device as a form of robustness check
on our methodology: would the disparities disappear if we simply
spent more time with each device?

In our interactions, we noticed that device experiences could vary
greatly in interface �richness��an informal measure of available
interaction avenues within the experience. This includes feature
o�erings (e.g., platforms for third-party skills or apps, third-party
integrations, built-in analytics or reporting, etc.), device capabilities
(e.g., whether a lightbulb is able to control light color or brightness



CHI '23, April 23�28, 2023, Hamburg, Germany Gunawan et al.

(a) Total Patterns (b) Unique Patterns

Figure 4: Scatter plots comparing video recording duration to total and unique dark patterns we annotated in each recording.
Points are jittered to improve readability. Frequency histograms in both dimensions are shown, as well as a linear regression
best-�t with con�dence intervals.

instead of just on or o� modes), level of detail in options, and design
complexity. We posit that interface richness is positively correlated
with the number of observed dark patterns: the patterns are design
components, so an interface that provides more design surfaces
may have greater potential to deploy more dark patterns compared
to a leaner interface. Richer interfaces should take longer to traverse
experimentally, thus we use device interaction length (represented
by video recording length in Table 1) as a proxy measure.

We calculate both Pearson's and Spearman's correlation coef-
�cient (A) for recording duration against the number of unique
and total dark patterns instances for all devices to �nd positive
and signi�cant correlations6 between recording length and dark
pattern count: Pearson'sA= 0”510and Spearman'sA= 0”474for
unique counts, then Pearson'sA= 0”591and Spearman'sA= 0”552
for total counts, with all? Ÿ 0”001. Figure 4 presents scatter plots
of recording duration (x-axis) against total (Figure 4a) or unique
(Figure 4b) dark patterns counts (y-axis), with frequency histograms
and a linear regression line of best-�t with con�dence intervals.
For total dark pattern counts, we see tighter clustering around
lower counts and outlier behavior (long tails) for high counts, as
compared to looser distribution for unique counts. This echoes the
two measures' divergence in Figure 2. However, more research is
needed to better understand the relationship between interaction
richness and dark pattern deployment, including using models with
more robust controls.

4.1.4 Comparison to Prior Measurement Work.Prior modality-
speci�c work measured the presence of unique dark patterns in
mobile apps: Di Geronimo et al. [26] investigated 240 apps and

6Interpretation ranges for both measures depend on the discipline in question; our measures are
considered `fair' in medicine, `strong' in political science, and `moderate' in psychology [8]. We
characterize our measures as `moderate' as they fall roughly halfway between no correlation and
perfect correlation.

Gunawan et al. [42] inspected 105. Figure 5 compares our �nd-
ings against these studies, mapped to the context categories from
Di Geronimo et al. [26] to provide an apples-to-apples compari-
son.7 Like Gunawan et al. [42], we caution that distributions heavily
depend on corpus and codebook construction (which we discuss
further in subsection 5.4). Additionally, our interaction methodol-
ogy departs from both studies' time-bound interactions, which may
impact the discoverability of dark patterns across all these studies.

Our �ndings generally agree with those from prior work, with
some exceptions. Our corpus size is smaller than those in Di Geron-
imo et al. [26]and Gunawan et al. [42], in part due to IoT companion
apps being a strict subset of apps in general, which may explain
why we do not observe dark patterns in every Di Geronimo et al.
[26] category (e.g.,Hidden Costs, Sneaking, andBait & Switch). We
do observe moreNaggingin our study, potentially because the IoT
context presents more opportunities for manufacturers to encour-
age optional behaviors like linking IoT devices to apps and to each
other, or signing-up for optional services. Our study additionally
includes moreHidden InformationandTrick Questionspatterns com-
pared to Gunawan et al. [42], who only correlate these DiGeronimo
categories with one dark pattern each.

4.2 Novel Dark Patterns
In this section we describe newly added dark pattern instances
in our codebook (see Table 2) during our pilot experiment and
annotation procedures (see section 3), and situate these within
extant taxonomies, traits, and strategies.

Some of these novel patterns pertain only to IoT contexts, in-
cluding:device sensed without permissions, cannot delete data from
device, andcannot remove device. Relatedly, we discoveredsettings or

7We �atten our �ndings to one modality in Figure 5 to see how holistic IoT experiences compare to
mobile apps, and because the majority of device experiences involved apps or touchscreens.
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Figure 5: Percentage of devices or app services containing categorized dark patterns, broken down into the Di Geronimo et al .
[26] categories and compared against app measurements from prior modality-based studies [42].

features detour to a di�erent modalitydark patterns when expected
capabilities were not included for a device modality. Prior work
generally examined self-contained �experiences� (e.g., websites in a
browser or apps on a phone) in isolation rather than as multimodal
experiences with con�gurative dependencies, which may explain
why such dark patterns were not previously observed.

Other novel patterns that we identi�ed�such as subscription
models or permissions requests�could feasibly be deployed in non-
IoT experiences. While permissions- or �nancial-related dark pat-
terns are not IoT-speci�c, the additional con�guration requirements
in IoT devices highlighted novel patterns likepay for long term use
andnonpermanent opt-out.

4.2.1 More Ways to Nag.Nagging [39] patterns manifest in myriad
ways, spanning ad-related nags [26] to spammy behavior [20] to
extraneous cues [42, 67]. In this study we add two new cases of
such patterns, �ndingextraneous social media featuresandnagging
self-promotional contentin some device experiences.

We considered social media features to be extraneous when they
deviated from the primary purpose of a device and were promoted
to the user in spammy, aggressive, or otherwise obtrusive manners.
Figure 6 presents an example of this pattern that we observed in
the Govee Home app for the Govee LED Light Bulb device.

We distinguishnagging self-promotional contentfrom native
advertising- or shopping-related dark patterns by identifying cases
when device experiences or manufacturers presented nags to en-
dorse their own services or content outside of traditional or ex-
pected ad placements. These were especially perplexing in the
Fire TV as shown in Figure 7: while scrolling for content on a
non-Prime user account, we overwhelmingly encountered Prime
content carousels with varying promotional labels, and were un-
able to avoid these carousels. Of the Prime-promoting carousels,

some were labeled as `sponsored,' but the nature of these spon-
sorships was unclear. Such internal promotions may skirt formal
requirements of advertising and disclosure law or guidance. Future
research is needed to understand the e�ect of technically legal but
potentially disadvantageous or annoying promotions.

4.2.2 Financial Dark Pa�erns.The `IoT' part of a smart device is
intended to o�er consumers value beyond the analog limitations of
the device. This presents additional opportunities for manufacturers
to apply the �nancial models from web modalities, like long-term
�nancial relationships via subscription models or tiered access
to features. We relate our new casepay for long term useto the
Hidden Subscription[67], Bait and Switch[20], and Obfuscation
dark patterns categories, which we added after being alerted by
the Amazon Ring app that certain features were inaccessible due
to expired subscriptions during our pilot experiment. Similarly,
during our pilot interactions with the Govee app, some features
were labeled as exclusive for �Savvy� membership users, but were
otherwise accessible to us without signing up for membership,
leading to our inclusion of thefeature seems premium but is not
pattern as a counter-case to the previously identi�edfeature seems
free but is not. We consider these patterns deceptive when they
obfuscate key information about device limitations out-of-the-box
or upon initial setup, as not all IoT device users may have made the
original device purchase.

4.2.3 Se�ings Inconsistencies.We noted that navigating settings
on some devices was particularly challenging or confusing, marking
such designs asinconsistent settings user interfaces. This falls under
Aesthetic Manipulation, with particular regards to the ways in which
these dark patterns obscure [19], restrict [68], or otherwise interfere
with user access to important controls. Figure 8 provides an example
from the Aqara Home app, which concurrently showspreselected
noti�cation settingsandno bulk toggle. Such designs force users to
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